论文标题

动词知识注入多语言事件处理

Verb Knowledge Injection for Multilingual Event Processing

论文作者

Majewska, Olga, Vulić, Ivan, Glavaš, Goran, Ponti, Edoardo M., Korhonen, Anna

论文摘要

与他们在NLP任务中取得压倒性的成功,深层变压器网络的语言能力(通过语言建模(LM)目标)经过了广泛的审查。虽然探测表明,这些模型编码了一种语言的一系列句法和语义特性,但它们仍然很容易回到表面的提示和简单的启发式上来解决下游任务,而不是利用更深入的语言知识。在本文中,我们针对其缺乏言语的一个这样的领域。我们研究了有关动词语义句法行为的明确信息是否在事件提取任务中改善LM预言变压器的性能 - 准确动词处理至关重要的下游任务。具体而言,我们将动词知识从策划的词汇资源传授到专用的适配器模块(称为动词适配器)中,从而使其可以在下游任务中补充LM预测期间获得的语言知识。我们首先证明,注入动词知识会导致英语事件提取的性能提高。然后,我们探索动词适配器以其他语言提取事件提取的实用性:我们研究(1)使用多语言变压器的零击语言转移以及(2)通过(嘈杂的自动)基于英语动词的词汇约束的转移。我们的结果表明,即使对动词适配器进行了大声翻译的约束,动词知识注入的好处确实扩展到了其他语言。

In parallel to their overwhelming success across NLP tasks, language ability of deep Transformer networks, pretrained via language modeling (LM) objectives has undergone extensive scrutiny. While probing revealed that these models encode a range of syntactic and semantic properties of a language, they are still prone to fall back on superficial cues and simple heuristics to solve downstream tasks, rather than leverage deeper linguistic knowledge. In this paper, we target one such area of their deficiency, verbal reasoning. We investigate whether injecting explicit information on verbs' semantic-syntactic behaviour improves the performance of LM-pretrained Transformers in event extraction tasks -- downstream tasks for which accurate verb processing is paramount. Concretely, we impart the verb knowledge from curated lexical resources into dedicated adapter modules (dubbed verb adapters), allowing it to complement, in downstream tasks, the language knowledge obtained during LM-pretraining. We first demonstrate that injecting verb knowledge leads to performance gains in English event extraction. We then explore the utility of verb adapters for event extraction in other languages: we investigate (1) zero-shot language transfer with multilingual Transformers as well as (2) transfer via (noisy automatic) translation of English verb-based lexical constraints. Our results show that the benefits of verb knowledge injection indeed extend to other languages, even when verb adapters are trained on noisily translated constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源