论文标题

基于距离的代表天际线和飞机沿帕累托前沿的$ k $中心

Faster Distance-Based Representative Skyline and $k$-Center Along Pareto Front in the Plane

论文作者

Cabello, Sergio

论文摘要

我们考虑了在平面中计算\ emph {基于距离的代表天际线}的问题,这是陶,丁,林和pei引入的问题[proc。第25届IEEE国际数据工程会议(ICDE),2009年],并在多目标优化的背景下由杜平,尼尔森和塔尔比(Optimization and Learning)独立考虑。给定飞机上的$ n $点的$ p $和参数$ k $,其任务是选择由$ p $定义的天际线的$ k $点(也称为$ p $的帕托阵线),以最大程度地减少从天际线到所选点的最大距离。我们表明,问题可以在$ o(n \ log h)$时间中解决,其中$ h $是$ p $的天际线的点数。我们还表明,可以在$ O(n \ log k)$时间中解决决策问题,并且可以在$ o(n \ log k + n \ operatatorName {loglog} n)$ time中解决优化问题。这改善了以前的算法,对于$ k $的大量值是最佳的。

We consider the problem of computing the \emph{distance-based representative skyline} in the plane, a problem introduced by Tao, Ding, Lin and Pei [Proc. 25th IEEE International Conference on Data Engineering (ICDE), 2009] and independently considered by Dupin, Nielsen and Talbi [Optimization and Learning - Third International Conference, OLA 2020] in the context of multi-objective optimization. Given a set $P$ of $n$ points in the plane and a parameter $k$, the task is to select $k$ points of the skyline defined by $P$ (also known as Pareto front for $P$) to minimize the maximum distance from the points of the skyline to the selected points. We show that the problem can be solved in $O(n\log h)$ time, where $h$ is the number of points in the skyline of $P$. We also show that the decision problem can be solved in $O(n\log k)$ time and the optimization problem can be solved in $O(n \log k + n \operatorname{loglog} n)$ time. This improves previous algorithms and is optimal for a large range of values of $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源