论文标题

$ r $ -FAT线性化多项式在有限字段上

$r$-fat linearized polynomials over finite fields

论文作者

Bartoli, Daniele, Micheli, Giacomo, Zini, Giovanni, Zullo, Ferdinando

论文摘要

在本文中,我们证明,在有限的字段$ \ mathbb {f} _ {q^n} _ {q^n} $上均不稳定的是,无论何时,无论何时,无论何时,与相应的线性相比,polot y point y point y point y potity是不稳定的,为此,我们定义并研究了$ r $ -FAT多项式,这是散射多项式的自然概括。 $ r $ -FAT $ \ MATHBB {F} _Q $ - 线性的多项式定义了一组线性的等级$ n $在订单$ q^n $的投影线中,重量$ r $的重量大于一个。当$ r $等于$ 1 $时,相应的线性集被称为俱乐部,它们与许多非凡的数学对象(如KM-ARCS,群体可划分的设计和等级度量代码)相关。使用代数曲线和全局功能字段上的技术,我们获得了$ r $的数值界限,以及具有$ r> 0 $的特殊$ r $ -FAT多项式的不存在。在$ n \ leq 4 $的情况下,我们完全确定存在$ r $ -FAT多项式的$ r $的值。在$ n = 5 $的情况下,我们提供了一个由$ 1 $ -FAT多项式的新家庭。此外,我们确定所谓的LP-PolyNomials为$ R $ -FAT的$ R $的值。

In this paper we prove that the property of being scattered for a $\mathbb{F}_q$-linearized polynomial of small $q$-degree over a finite field $\mathbb{F}_{q^n}$ is unstable, in the sense that, whenever the corresponding linear set has at least one point of weight larger than one, the polynomial is far from being scattered. To this aim, we define and investigate $r$-fat polynomials, a natural generalization of scattered polynomials. An $r$-fat $\mathbb{F}_q$-linearized polynomial defines a linear set of rank $n$ in the projective line of order $q^n$ with $r$ points of weight larger than one. When $r$ equals $1$, the corresponding linear sets are called clubs, and they are related with a number of remarkable mathematical objects like KM-arcs, group divisible designs and rank metric codes. Using techniques on algebraic curves and global function fields, we obtain numerical bounds for $r$ and the non-existence of exceptional $r$-fat polynomials with $r>0$. In the case $n\leq 4$, we completely determine the spectrum of values of $r$ for which an $r$-fat polynomial exists. In the case $n=5$, we provide a new family of $1$-fat polynomials. Furthermore, we determine the values of $r$ for which the so-called LP-polynomials are $r$-fat.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源