论文标题

MM-FSOD:META和METRIC集成了几个射击对象检测

MM-FSOD: Meta and metric integrated few-shot object detection

论文作者

Li, Yuewen, Feng, Wenquan, Lyu, Shuchang, Zhao, Qi, Li, Xuliang

论文摘要

在对象检测任务中,CNN(卷积神经网络)模型在训练过程中始终需要大量注释的示例。为了减少昂贵注释的依赖性,很少有射击对象检测已成为越来越多的研究重点。在本文中,我们提出了一个有效的对象检测框架(MM-FSOD),该框架集成了度量学习和元学习以应对几个弹出对象检测任务。我们的模型是一种类不足的检测模型,可以准确识别新类别,这些类别未出现在训练样本中。具体而言,要快速学习而没有微调过程的新类别的特征,我们建议一个元代表模块(MR模块)学习类内部平均原型。 MR模块使用元学习方法训练,以获得重建高级特征的能力。为了进一步进行具有查询ROIS特征的支持原型之间的特征相似性,我们提出了一个用作分类器的Pearson Metric Module(PR模块)。与以前常用的度量方法相比,余弦距离度量。 PR模块使该模型能够将特征与区分嵌入空间保持一致。我们在基准数据集FSOD,Coco和Pascal VOC上进行了广泛的实验,以证明我们的模型的可行性和效率。与先前的方法相比,MM-FSOD达到了最新的(SOTA)结果。

In the object detection task, CNN (Convolutional neural networks) models always need a large amount of annotated examples in the training process. To reduce the dependency of expensive annotations, few-shot object detection has become an increasing research focus. In this paper, we present an effective object detection framework (MM-FSOD) that integrates metric learning and meta-learning to tackle the few-shot object detection task. Our model is a class-agnostic detection model that can accurately recognize new categories, which are not appearing in training samples. Specifically, to fast learn the features of new categories without a fine-tuning process, we propose a meta-representation module (MR module) to learn intra-class mean prototypes. MR module is trained with a meta-learning method to obtain the ability to reconstruct high-level features. To further conduct similarity of features between support prototype with query RoIs features, we propose a Pearson metric module (PR module) which serves as a classifier. Compared to the previous commonly used metric method, cosine distance metric. PR module enables the model to align features into discriminative embedding space. We conduct extensive experiments on benchmark datasets FSOD, MS COCO, and PASCAL VOC to demonstrate the feasibility and efficiency of our model. Comparing with the previous method, MM-FSOD achieves state-of-the-art (SOTA) results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源