论文标题
通过格拉斯曼代数的阿德勒地图的可集成扩展
Integrable extensions of Adler's map via Grassmann algebras
论文作者
论文摘要
我们研究了Adler地图上的某些扩展,该订单$ n $的Grassmann代数$γ(n)$。我们考虑了已知的格拉斯曼(Grassmann)扩展的阿德勒(Adler)地图,并假设$ n = 1 $,我们在六个维度上获得了阿德勒(Adler)地图的交换。我们表明,该地图满足了杨 - 巴克斯特方程式,承认了三个不变式,并且是liouville的。我们明确求解地图,被视为一个离散的动力系统。
We study certain extensions of the Adler map on Grassmann algebras $Γ(n)$ of order $n$. We consider a known Grassmann-extended Adler map, and assuming that $n=1$ we obtain a commutative extension of Adler's map in six dimensions. We show that the map satisfies the Yang--Baxter equation, admits three invariants and is Liouville integrable. We solve the map explicitly, viewed as a discrete dynamical system.