论文标题
在NS-NS耦合上以$α'^3 $
On NS-NS couplings at order $α'^3$
论文作者
论文摘要
最近,在特定方案中发现了II型超弦理论的弦框架有效动作的量规对称性和T偶性约束,在15个不同结构中具有445个耦合。在本文中,使用字段重新定义,我们用251个耦合来编写它们,这些耦合出现在9种不同的结构中。 9个结构仅涉及riemann曲率,$ h_ {αβμ} $和$ \nabla_αH_{βμν} $。结构中的$ r^4 $,$ h^8 $,$ h^6r $,$ h^4r^2 $,$ h^2 $,$ h^2r^3 $分别为$ 2,\,2,2,1,1,\,7,7,\,22 $ $(\ nabla h)^2 H^4 $,$(\ nabla H)^2H^2r $分别为$ 12,\,22,\,77,\,106 $。新的耦合与四个NS-NS顶点操作员的球体级S-Matrix元素完全一致。
Recently, imposing the gauge-symmetry and the T-duality constraints on the string frame effective actions of type II superstring theories, the NS-NS cuplings have been found in a particular scheme which has 445 couplings in 15 different structures. In this paper, using a field redefinition, we write them in terms of 251 couplings which appear in 9 different structures. The 9 structures involve only Riemann curvature, $H_{αβμ}$ and $\nabla_αH_{βμν}$. The number of couplings in the structures $R^4$, $H^8$, $H^6R$, $H^4R^2$, $H^2R^3$ are $2,\, 2,\, 1,\, 7,\,22$, respectively, and the number of couplings in the structures $(\nabla H)^4$, $(\nabla H)^2 R^2$, $(\nabla H)^2 H^4$, $(\nabla H)^2H^2R$ are $12,\, 22,\, 77,\, 106$, respectively. The new couplings are fully consistent with the sphere-level S-matrix element of four NS-NS vertex operators.