论文标题

新兴视频编码标准的子采样跨组件预测

Sub-sampled Cross-component Prediction for Emerging Video Coding Standards

论文作者

Li, Junru, Wang, Meng, Zhang, Li, Wang, Shiqi, Zhang, Kai, Wang, Shanshe, Ma, Siwei, Gao, Wen

论文摘要

跨组件线性模型(CCLM)预测已反复证明可以有效地减少视频压缩中的通道间冗余。从本质上讲,线性模型通过在编码器和解码器上使用可访问的LUMA和Chroma参考样品进行了相同的训练,从而提高了由于最小平方回归或基于最大值的模型参数派生而引起的操作复杂性水平。在本文中,我们研究了线性模型在基于子采样的跨组件相关挖掘的背景下的能力,以此作为显着释放操作负担并促进编码器和解码器的硬件和软件设计的手段。特别是,通过利用空间相关性和通道间相关性来精心设计子采样比和位置。广泛的实验验证了所提出的方法的特征是它的操作和鲁棒性在速率延伸性能方面,导致通过多功能视频编码(VVC)标准和第三代音频视频编码标准(AVS3)采用。

Cross-component linear model (CCLM) prediction has been repeatedly proven to be effective in reducing the inter-channel redundancies in video compression. Essentially speaking, the linear model is identically trained by employing accessible luma and chroma reference samples at both encoder and decoder, elevating the level of operational complexity due to the least square regression or max-min based model parameter derivation. In this paper, we investigate the capability of the linear model in the context of sub-sampled based cross-component correlation mining, as a means of significantly releasing the operation burden and facilitating the hardware and software design for both encoder and decoder. In particular, the sub-sampling ratios and positions are elaborately designed by exploiting the spatial correlation and the inter-channel correlation. Extensive experiments verify that the proposed method is characterized by its simplicity in operation and robustness in terms of rate-distortion performance, leading to the adoption by Versatile Video Coding (VVC) standard and the third generation of Audio Video Coding Standard (AVS3).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源