论文标题
纠结 - 安蒂基克的互动力和绑定状态在$ ϕ^4 $模型中,带有二次和四分之一的分散
Kink-Antikink Interaction Forces and Bound States in a $ϕ^4$ Model with Quadratic and Quartic dispersion
论文作者
论文摘要
我们考虑了涉及众所周知的$ ϕ^4 $ klein-gordon理论的模型中孤立波的相互作用,但现在具有不同的预先成分的拉普拉斯和biharmonic项。由于各个线性运算符的竞争,我们会在改变模型参数时获得三种不同的情况。首先,Biharmonic效应主导,产生振荡性的波间相互作用。在第三个中,谐波效应占了上风呈指数相互作用,而我们在关键的第二种情况下发现了一个有趣的线性调节指数效应,从而将上述两个制度分开。对于每种情况,当最初以足够距离分离时,我们都会计算扭结和抗Kink之间的力。能够编写加速度作为分离距离及其相应的普通微分方程的函数,我们测试相应的预测,在适当的情况下找到非常好的一致性,并具有相应的偏微分方程结果。如果两个发现有所不同,我们解释了差异的根源。最后,我们首先瞥见了谐波和双旋转效应对扭结 - 安提克克碰撞结果以及相应的单键和多动窗口的结果的相互作用。
We consider the interaction of solitary waves in a model involving the well-known $ϕ^4$ Klein-Gordon theory, but now bearing both Laplacian and biharmonic terms with different prefactors. As a result of the competition of the respective linear operators, we obtain three distinct cases as we vary the model parameters. In the first the biharmonic effect dominates, yielding an oscillatory inter-wave interaction; in the third the harmonic effect prevails yielding exponential interactions, while we find an intriguing linearly modulated exponential effect in the critical second case, separating the above two regimes. For each case, we calculate the force between the kink and antikink when initially separated with sufficient distance. Being able to write the acceleration as a function of the separation distance, and its corresponding ordinary differential equation, we test the corresponding predictions, finding very good agreement, where appropriate, with the corresponding partial differential equation results. Where the two findings differ, we explain the source of disparities. Finally, we offer a first glimpse of the interplay of harmonic and biharmonic effects on the results of kink-antikink collisions and the corresponding single- and multi-bounce windows.