论文标题

在代表限制gendo对称代数上,只有一个非注射射击模块

On representation-finite gendo-symmetric algebras with only one non-injective projective module

论文作者

Aihara, Takuma, Chan, Aaron, Honma, Takahiro

论文摘要

由Schur代数与对称群体的组代数之间的关系以及代数谎言理论中的其他类似示例之间的关系,Min Fang和Steffen Koenig解决了生成器代数的某种行为,它们在对称代数上的内态代数,它们称为gendo-Ammetmemmemmetric-Metmememmetric Algebra。继续进行这项工作,我们在本文中对代表 - gendo-Angemmmetric代数进行了分类,这些代数最多具有不可分解的非注射式射击模块的同构类别。我们还从Wei Hu和Changchang XI的意义上确定了它们几乎ν稳定的衍生等效类。事实证明,可以选择代表作为代表对称代数的商,由某个不可分解的投影模块的socle选择。

Motivated by the relation between Schur algebra and the group algebra of a symmetric group, along with other similar examples in algebraic Lie theory, Min Fang and Steffen Koenig addressed some behaviour of the endomorphism algebra of a generator over a symmetric algebra, which they called gendo-symmetric algebra. Continuing this line of works, we classify in this article the representation-finite gendo-symmetric algebras that have at most one isomorphism class of indecomposable non-injective projective module. We also determine their almost ν-stable derived equivalence classes in the sense of Wei Hu and Changchang Xi. It turns out that a representative can be chosen as the quotient of a representation-finite symmetric algebra by the socle of a certain indecomposable projective module.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源