论文标题
冰中非典型成核中的质子弦和环在冰中
Proton strings and rings in atypical nucleation of ferroelectricity in ice
论文作者
论文摘要
普通冰具有一个质子排序的相,在动力学上是可自发的,无法自发到达的低温下的铁电(Fe)基态,而残留的玻璃熵持续存在。在低温下用KOH掺杂光后,向FE冰的过渡发生了,但其微观机制仍然需要澄清。我们引入了基于偶性相互作用的晶格模型,以及一个竞争,令人沮丧的术语,该术语强制执行ICE规则(IR)。在没有破坏性缺陷的情况下,标准的蒙特卡洛(MC)模拟使该冰模型陷入了无序的质子环构型状态,并具有正确的玻璃熵。复制交换加速了MC采样策略,无需开放的路径移动,接口或外部配置,在平衡这种无缺陷的冰时,通过明确定义的一阶相过渡达到其低温FE顺序。当将模仿KOH杂质的质子空缺被种植到持续的晶格中时,它们使标准的MC模拟能够起作用,从而揭示了从质子疾病到过渡温度低于部分FE顺序的冰的演化动力学。替换普通的成核,每个杂质都会打开一个质子环产生线性弦,这是一个随时间扩展的实际Fe氢键线。让人想起那些用于自旋冰的人,这些杂质引起的字符串也被认为也存在于掺杂的水冰中,其中IRS甚至更强。新兴机制产生的长期Fe顺序分数对掺杂剂浓度的依赖性以及在淬火温度下的依赖性,与现实生活中的KOH掺杂冰相比,它比较了。
Ordinary ice has a proton-disordered phase which is kinetically metastable, unable to reach, spontaneously, the ferroelectric (FE) ground state at low temperature where a residual Pauling entropy persists. Upon light doping with KOH at low temperature, the transition to FE ice takes place, but its microscopic mechanism still needs clarification. We introduce a lattice model based on dipolar interactions plus a competing, frustrating term that enforces the ice rule (IR). In the absence of IR-breaking defects, standard Monte Carlo (MC) simulation leaves this ice model stuck in a state of disordered proton ring configurations with the correct Pauling entropy. A replica exchange accelerated MC sampling strategy succeeds, without open path moves, interfaces, or off-lattice configurations, in equilibrating this defect-free ice, reaching its low-temperature FE order through a well-defined first-order phase transition. When proton vacancies mimicking the KOH impurities are planted into the IR-conserving lattice, they enable standard MC simulation to work, revealing the kinetics of evolution of ice from proton disorder to partial FE order below the transition temperature. Replacing ordinary nucleation, each impurity opens up a proton ring generating a linear string, an actual FE hydrogen bond wire that expands with time. Reminiscent of those described for spin ice, these impurity-induced strings are proposed to exist in doped water ice too, where IRs are even stronger. The emerging mechanism yields a dependence of the long-time FE order fraction upon dopant concentration, and upon quenching temperature, that compares favorably with that known in real-life KOH doped ice.