论文标题

$ \ Mathcal {pt} $ - 三个状态的对称量子歧视

$\mathcal{PT}$-Symmetric Quantum Discrimination of Three States

论文作者

Balytskyi, Yaroslav, Raavi, Manohar, Pinchuk, Anatoliy, Chang, Sang-Yoon

论文摘要

如果已知该系统位于两个非正交量子状态之一中,则$ |ψ_1\ rangle $或$ |ψ_2\ rangle $,由于单位性约束,不可能通过单个测量值来区分它们。在常规的Hermitian量子力学中,可以成功歧视概率$ p <1 $,而在$ \ Mathcal {pt} $ - 对称量子力学a \ textIt {模拟的单次估计}量子状态识别与成功率$ p $可以完成。我们扩展了$ \ Mathcal {pt} $ - 对称量子状态歧视方法,用于三种纯量子状态,$ |ψ_1\ rangle $,$ |ψ_2\ rangle $和$ |ψ_3\ rangle $,而无需对这些状态的地步和对称性拥有任何其他限制。我们讨论了我们的方法与最近在IBM量子处理器上实现$ \ Mathcal {pt} $对称性的关系。

If the system is known to be in one of two non-orthogonal quantum states, $|ψ_1\rangle$ or $|ψ_2\rangle$, it is not possible to discriminate them by a single measurement due to the unitarity constraint. In a regular Hermitian quantum mechanics, the successful discrimination is possible to perform with the probability $p < 1$, while in $\mathcal{PT}$-symmetric quantum mechanics a \textit{simulated single-measurement} quantum state discrimination with the success rate $p$ can be done. We extend the $\mathcal{PT}$-symmetric quantum state discrimination approach for the case of three pure quantum states, $|ψ_1\rangle$, $|ψ_2\rangle$ and $|ψ_3\rangle$ without any additional restrictions on the geometry and symmetry possession of these states. We discuss the relation of our approach with the recent implementation of $\mathcal{PT}$ symmetry on the IBM quantum processor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源