论文标题

仿射为代数的奇异模块,并应用于不规则的WZNW共形块

Singular modules for affine Lie algebras, and applications to irregular WZNW conformal blocks

论文作者

Felder, Giovanni, Rembado, Gabriele

论文摘要

我们给出了零属中不规则真空/covacua的空间的数学定义,对于任何简单的谎言代数,在通用的非临界水平上工作。这使用了仿射级代数模块的共同变量,其参数与不规则的siNgular Meromorormormormorphic Connections的模量空间相匹配:DE RHAM空间。 The Segal--Sugawara representation of the Virasoro algebra is used to show that the spaces of irregular conformal blocks assemble into a flat vector bundle over the space of somonodromy times à la Klarès, and we provide a universal version of the resulting flat connection generalising the irregular KZ connection of Reshetikhin and the dynamical KZ connection of Felder--Markov- tarasov-Varchenko。

We give a mathematical definition of spaces of irregular vacua/covacua in genus zero, for any simple Lie algebra, working at generic noncritical level. This uses coinvariants of affine-Lie-algebra modules whose parameters match up with those of moduli spaces of irregular-singular meromorphic connections: the de Rham spaces. The Segal--Sugawara representation of the Virasoro algebra is used to show that the spaces of irregular conformal blocks assemble into a flat vector bundle over the space of somonodromy times à la Klarès, and we provide a universal version of the resulting flat connection generalising the irregular KZ connection of Reshetikhin and the dynamical KZ connection of Felder--Markov--Tarasov--Varchenko.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源