论文标题

具有无限漂移的超临界SDE的加热内核

Heat kernel of supercritical SDEs with unbounded drifts

论文作者

Menozzi, Stéphane, Xicheng, Zhang

论文摘要

令$α\ in(0,2)$和{\ Mathbb n} $中的$ d \。请考虑以下在$ {\ Mathbb r}^d $:$$ {\ rm d} x_t = b(t,x_t){\ rm d} t+a(t,x_ {t - }){\ rm d} lm d} l^{(α)} _ t,t, a $ d $ - 二维旋转不变$α$稳定过程,$ b:{\ Mathbb r} _+\ times {\ Mathbb r}^d \ to {\ Mathbb r}^d $ and $ a:{\ Mathb r} r}^d \ otimes {\ mathbb r}^d $是h {Ö} lder在太空中的连续函数,分别订单$β,γ\ in(0,1)$,使得$(β\wedgeγ)+α> 1 $,在$ t $中均匀地均匀。 在这里$ b $可能是无限的。我们还为对数衍生物建立了锋利的上限。特别是,我们涵盖了(0,1)$的整个超临界范围$α\。您的证明是基于临时参数扩展和概率技术。

Let $α\in(0,2)$ and $d\in{\mathbb N}$. Consider the following SDE in ${\mathbb R}^d$:$${\rm d}X_t=b(t,X_t){\rm d} t+a(t,X_{t-}){\rm d} L^{(α)}_t,\ \ X_0=x,$$where $L^{(α)}$ is a $d$-dimensional rotationally invariant $α$-stable process, $b:{\mathbb R}_+\times{\mathbb R}^d\to{\mathbb R}^d$ and $a:{\mathbb R}_+\times{\mathbb R}^d\to{\mathbb R}^d\otimes{\mathbb R}^d$ are H{ö}lder continuous functions in space, with respective order $β,γ\in (0,1)$ such that $(β\wedge γ)+α>1$, uniformly in $t$. Here $b$ may be unbounded.When $a$ is bounded and uniformly elliptic, we show that the unique solution $X_t(x)$ of the above SDE admits a continuous density, which enjoys sharp two-sided estimates. We also establish sharp upper-bound for the logarithmic derivative. In particular, we cover the whole supercritical range $α\in (0,1) $.Our proof is based on ad hoc parametrix expansions and probabilistic techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源