论文标题
使用最大副熵的依赖控制图
Dependence control chart using maximum copula entropy
论文作者
论文摘要
统计质量控制方法值得注意的是制造过程中的标准生产。在这方面,有许多经典的举止可以控制这一过程。他们中的许多人围绕流程数据的分布有一个全球假设。它们应该是正常的,但是很明显,它并不总是在所有过程中有效。这样的控制图做出了一些错误的决定,以浪费资金。因此,使用多元数据集的主要问题是如何找到数据集的多元分布,从而保存了变量之间的原始依赖关系。据我们所知,Copula函数可以保证依赖结果函数。当没有有关统计社会的其他基本信息时,这还不够,我们只有一个数据集。因此,我们将最大的熵概念应用于这种情况。在本文中,首先,我们从运行生产过程时需要控制的制造过程中获得数据集的联合分布。然后,我们通过最大副熵获得椭圆控制极限。最后,我们代表了使用该方法的实践示例。计算某些手段的平均运行长度,并移动以显示最大副熵的能力。最后,提出了两个实际的数据示例,并将我们方法的结果与基于Fisher分布的传统方式进行了比较。
Statistical quality control methods are noteworthy to producing standard production in manufacturing processes. In this regard, there are many classical manners to control the process. Many of them have a global assumption around the distributions of the process data. They are supposed to be Normal, but it is clear that it is not always valid for all processes. Such control charts made some wrong decisions that waste funds. So, the main question while working with multivariate data set is how to find the multivariate distribution of the data set, which saves the original dependency between variables. To our knowledge, a copula function guarantees dependence on the result function. It is not enough when there is no other fundamental information about the statistical society, and we have just a data set. Therefore, we apply the maximum entropy concept to deal with this situation. In this paper, first of all, we get the joint distribution of a data set from a manufacturing process that needs to be in-control while running the production process. Then, we get an elliptical control limit via the maximum copula entropy. Finally, we represent a practical example using the method. Average run lengths are calculated for some means and shifts to show the ability of the maximum copula entropy. In the end, two practical data examples are presented, and the results of our method are compared with the traditional way based on Fisher distribution.