论文标题

孔雀探索:使用控制效率轨迹的无人机轻量级探索

Peacock Exploration: A Lightweight Exploration for UAV using Control-Efficient Trajectory

论文作者

Lee, EungChang Mason, Choi, Duckyu, Myung, Hyun

论文摘要

由于其广泛的应用,近年来,无人驾驶飞机已经受到了很多关注,例如探索未知环境以获取3D地图而又不知道它的情况。现有的探索方法在很大程度上受到计算重概率的路径计划的挑战。同样,考虑没有考虑无人机有效载荷的运动动力学约束或适当的传感器。在本文中,为了解决这些问题并考虑无人机的有效载荷和计算资源有限,我们提出了“孔雀探索”:使用无人机使用预先计算的最小snap轨迹的轻巧探索方法,看起来像孔雀的尾巴。使用众所周知的,有效的最小SNAP轨迹和OCTOMAP,配备了RGB-D摄像机的UAV可以探索未知的3D环境,而无需仅具有O(logN)计算复杂性的任何先验知识或人类挖掘。它还采用了退缩的地平线方法和简单的启发式评分标准。通过探索具有挑战性的3D迷宫环境并将其与最先进的算法相比,该算法的性能证明了这一算法的性能。

Unmanned Aerial Vehicles have received much attention in recent years due to its wide range of applications, such as exploration of an unknown environment to acquire a 3D map without prior knowledge of it. Existing exploration methods have been largely challenged by computationally heavy probabilistic path planning. Similarly, kinodynamic constraints or proper sensors considering the payload for UAVs were not considered. In this paper, to solve those issues and to consider the limited payload and computational resource of UAVs, we propose "Peacock Exploration": A lightweight exploration method for UAVs using precomputed minimum snap trajectories which look like a peacock's tail. Using the widely known, control efficient minimum snap trajectories and OctoMap, the UAV equipped with a RGB-D camera can explore unknown 3D environments without any prior knowledge or human-guidance with only O(logN) computational complexity. It also adopts the receding horizon approach and simple, heuristic scoring criteria. The proposed algorithm's performance is demonstrated by exploring a challenging 3D maze environment and compared with a state-of-the-art algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源