论文标题

科学事实验证的段落级多任务学习模型

A Paragraph-level Multi-task Learning Model for Scientific Fact-Verification

论文作者

Li, Xiangci, Burns, Gully, Peng, Nanyun

论文摘要

即使对于领域专家,通过提供支持或反驳证据理由来验证科学主张是一项非凡的任务。由于错误信息在每时每刻都在社交媒体或新闻网站上激增,因此情况会恶化。结果,自动事实验证工具对于打击错误信息的传播至关重要。在这项工作中,我们通过直接从BERT模型中计算一系列上下文化的句子嵌入,并共同培训有关理由选择和立场预测的模型,为SCIFACT任务提出了一个新颖的段落级,多任务学习模型。

Even for domain experts, it is a non-trivial task to verify a scientific claim by providing supporting or refuting evidence rationales. The situation worsens as misinformation is proliferated on social media or news websites, manually or programmatically, at every moment. As a result, an automatic fact-verification tool becomes crucial for combating the spread of misinformation. In this work, we propose a novel, paragraph-level, multi-task learning model for the SciFact task by directly computing a sequence of contextualized sentence embeddings from a BERT model and jointly training the model on rationale selection and stance prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源