论文标题

链接的分区理想和欧几里得台球分区

Linked partition ideals and Euclidean billiard partitions

论文作者

Chern, Shane

论文摘要

欧几里得台球分区最近是由安德鲁斯(Andrews),德拉维奇(Dragovic)和拉德诺维奇(Radnovic)在欧几里得空间中对椭圆形台球的周期性轨迹进行的研究。它们是整数分区分为不同部分,因此(E1)相邻部分绝不是奇怪的。 (E2)最小的部分是。通过完善链接的分区理想的框架,我们建立了几个相关的三角型生成功能身份,而安德鲁斯,德拉维奇和radnovic的结果是直接的结果。

Euclidean billiard partitions were recently introduced by Andrews, Dragovic and Radnovic in their study of periodic trajectories of ellipsoidal billiards in the Euclidean space. They are integer partitions into distinct parts such that (E1) adjacent parts are never both odd; (E2) the smallest part is even. By refining the framework of linked partition ideals, we establish a couple of relevant trivariate generating function identities, from which the result of Andrews, Dragovic and Radnovic follows as an immediate consequence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源