论文标题
关于满足Chebyshev $π(x)$的近似的系数
On coefficients satisfying Chebyshev's approximation of $π(x)$
论文作者
论文摘要
我们注意到了一个有趣且表达不足的事实,从Chebyshev的初始界限到质量计数功能,$π(x):= \#\ {p \ {p \ leq x:p \ p \ text {prime} \} $,$,基于d $ in d $ in Do $ sheme $ n $ n $ n $ chine $ n osy us y osy的$ d \ in Concone $ d $的选择(dosections $ d $) $μ(d)$这样:$ \ sum_ {d} \ frac {a(d)} {d} = 0,\ quad \ wedge \ quad \ quad \ quad - \ sum_ {d} \ frac {a(d)
We note an interesting and under-expressed fact from Chebyshev's initial bounding for the prime counting function, $π(x) := \# \{p \leq x : p \text{ prime}\},$ based upon a selection of fixed coefficients $d\in D$ to show $ψ(x) \asymp x$, and thus the goal of choosing some $a(d)$ approximately the same as $μ(d)$ such that: $$ \sum_{d}\frac{a(d)}{d} = 0, \quad \wedge \quad -\sum_{d}\frac{a(d)\log d}{d} \approx 1.$$