论文标题

从手持到无约束的对象检测:一种弱监督的在线学习方法

From Handheld to Unconstrained Object Detection: a Weakly-supervised On-line Learning Approach

论文作者

Maiettini, Elisa, Maracani, Andrea, Camoriano, Raffaello, Pasquale, Giulia, Tikhanoff, Vadim, Rosasco, Lorenzo, Natale, Lorenzo

论文摘要

基于深度学习(DL)的对象检测方法以计算昂贵的培训和广泛的数据标签为代价实现了显着的性能。可以利用机器人的实施例来通过与人类的自然互动来自动互动来自动注释训练数据来减轻这种负担,该培训数据显示了感兴趣的对象。但是,仅从这些数据中学习可能会引入偏见(所谓的领域变化),并防止适应新任务。虽然弱监督的学习(WSL)提供了一套完善的技术来应对通用计算机视觉中的这些问题,但它在挑战机器人域中的采用仍处于初步阶段。在这项工作中,我们针对在教师学习者环境中训练的机器人的场景,以检测手持物体。目的是通过让机器人以有限的人类标签预算来探索环境,以提高不同环境中的检测性能。我们比较了检测管道中WSL的几种技术,以降低模型的重新训练成本而不损害准确性,提出了针对所考虑的机器人场景的解决方案。我们表明,机器人可以通过与人类教师(积极学习)或自主监督(半监督学习)进行互动来改善对新领域的适应。我们将策略整合到在线检测方法中,并以很少的标签实现有效的模型更新功能。我们在域转移下实验基准了我们挑战机器人对象检测任务的方法。

Deep Learning (DL) based methods for object detection achieve remarkable performance at the cost of computationally expensive training and extensive data labeling. Robots embodiment can be exploited to mitigate this burden by acquiring automatically annotated training data via a natural interaction with a human showing the object of interest, handheld. However, learning solely from this data may introduce biases (the so-called domain shift), and prevents adaptation to novel tasks. While Weakly-supervised Learning (WSL) offers a well-established set of techniques to cope with these problems in general-purpose Computer Vision, its adoption in challenging robotic domains is still at a preliminary stage. In this work, we target the scenario of a robot trained in a teacher-learner setting to detect handheld objects. The aim is to improve detection performance in different settings by letting the robot explore the environment with a limited human labeling budget. We compare several techniques for WSL in detection pipelines to reduce model re-training costs without compromising accuracy, proposing solutions which target the considered robotic scenario. We show that the robot can improve adaptation to novel domains, either by interacting with a human teacher (Active Learning) or with an autonomous supervision (Semi-supervised Learning). We integrate our strategies into an on-line detection method, achieving efficient model update capabilities with few labels. We experimentally benchmark our method on challenging robotic object detection tasks under domain shift.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源