论文标题

自动增益热红外摄像机的在线光度校准

Online Photometric Calibration of Automatic Gain Thermal Infrared Cameras

论文作者

Das, Manash Pratim, Matthies, Larry, Daftry, Shreyansh

论文摘要

由于其提高的分辨率和可移植性,热红外摄像机越来越多地用于机器人视觉,工业检查和医学成像等各种应用中。但是,由于两个主要原因:这些算法需要进行光度假设,并且由于数据采集和传感器的差异,因此无法将RGB相机的光度法校准应用于热摄像机。在本文中,我们朝这个方向迈出了一步,并引入了一种新型算法,用于在线光度校准热摄像机。我们提出的方法不需要任何特定的驱动器/硬件支持,因此可以应用于任何商业现成的热IR摄像头。我们在视觉探测器和猛击算法的背景下介绍了这一点,并通过对两个标准基准数据集进行了广泛的实验来证明我们所提出的系统的功效,以及在自然室外环境中使用热线摄像头进行现实世界现场测试。

Thermal infrared cameras are increasingly being used in various applications such as robot vision, industrial inspection and medical imaging, thanks to their improved resolution and portability. However, the performance of traditional computer vision techniques developed for electro-optical imagery does not directly translate to the thermal domain due to two major reasons: these algorithms require photometric assumptions to hold, and methods for photometric calibration of RGB cameras cannot be applied to thermal-infrared cameras due to difference in data acquisition and sensor phenomenology. In this paper, we take a step in this direction, and introduce a novel algorithm for online photometric calibration of thermal-infrared cameras. Our proposed method does not require any specific driver/hardware support and hence can be applied to any commercial off-the-shelf thermal IR camera. We present this in the context of visual odometry and SLAM algorithms, and demonstrate the efficacy of our proposed system through extensive experiments for both standard benchmark datasets, and real-world field tests with a thermal-infrared camera in natural outdoor environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源