论文标题

基于内核的图形卷积网络的动作识别

Action Recognition with Kernel-based Graph Convolutional Networks

论文作者

Sahbi, Hichem

论文摘要

学习图卷积网络(GCN)是一个新兴领域,旨在将深度学习推广到任意非规范领域。大多数现有的GCN都遵循邻里聚合方案,在该方案中,节点的表示是通过使用平均或排序操作汇总其相邻节点表示形式来递归获得的。但是,这些操作要么是判别或增加训练参数的数量,因此计算复杂性和过度拟合风险。在本文中,我们介绍了一个新型的GCN框架,该框架在繁殖的内核希尔伯特空间(RKHS)中实现了空间图卷积。后者可以通过隐式内核表示设计,在高维且更具区分空间的情况下设计卷积图过滤器,而不会增加训练参数的数量。我们的GCN模型的特殊性还涉及其实现卷积的能力,而无需在学到的图形过滤器的接收场中明确重新调整节点,从而使用输入图的节点,从而使Rexloctions置换置换率不合时宜且定义良好。对基于骨架的动作识别的具有挑战性的任务进行的实验表明,该方法的优势与不同的基准以及相关工作。

Learning graph convolutional networks (GCNs) is an emerging field which aims at generalizing deep learning to arbitrary non-regular domains. Most of the existing GCNs follow a neighborhood aggregation scheme, where the representation of a node is recursively obtained by aggregating its neighboring node representations using averaging or sorting operations. However, these operations are either ill-posed or weak to be discriminant or increase the number of training parameters and thereby the computational complexity and the risk of overfitting. In this paper, we introduce a novel GCN framework that achieves spatial graph convolution in a reproducing kernel Hilbert space (RKHS). The latter makes it possible to design, via implicit kernel representations, convolutional graph filters in a high dimensional and more discriminating space without increasing the number of training parameters. The particularity of our GCN model also resides in its ability to achieve convolutions without explicitly realigning nodes in the receptive fields of the learned graph filters with those of the input graphs, thereby making convolutions permutation agnostic and well defined. Experiments conducted on the challenging task of skeleton-based action recognition show the superiority of the proposed method against different baselines as well as the related work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源