论文标题
出色的ATTOSONDγ射线发射和高产量激光辐射的纳米微阵列产生的高收益正电子阵列
Brilliant attosecond γ-ray emission and high-yield positron production from intense laser-irradiated Nano-Micro array
论文作者
论文摘要
我们研究了一种新颖的方案,用于出色的AttoSondγ射线发射和高收益正电子的产生,该方案是通过在纳米微阵列(NMA)上掺入底物的纳米微阵列(NMA)的超强度激光脉冲来完成的。该方案能够有效地实现电子加速和碰撞几何形状。然后以高转化效率生成γ射线闪光和正电子束。在激光强度为I_0 = 8倍10^{23} w/cm^2,〜27%的激光能将成功传输到γ射线中,而激光能的〜0.7%则转移到正上子中。结果,超短(〜440 as)和超毛力(〜10^{24}光子s^{ - 1} mm^{ - 2} mrad^{ - 2} per 0.1%bw @ 15 mev @ 15 meV @ 15 mev)γ射线爆发,高温(1.48 times 10^{11}} {11} {11} {11} {22 {产生正电子束。我们发现激光对光子转换效率(与I_0^{0.75}成正比)和具有激光稳定性转换效率(与I_0^{2.5})的超级线性缩放率的次线性缩放率和激光强度的超级线性缩放。多维粒子中的粒子模拟表明,粒子(γ光子和正电子)可以通过激光焦点位置以及NMA的长度和间距来操纵。获得了NMA中粒子产生的最佳条件,表明在极端激光场中粒子生成中的纳米线阵列具有优势。此外,讨论了高能密度(HED)环境中的正电子歼灭效应。使用NMA的计划将提供有效的途径,以调查即将到来的10个PW激光设施,以调查Attosexond核科学和HED物理学。
We investigate a novel scheme for brilliant attosecond γ-ray emission and high-yield positron production, which is accomplished with an ultra-intense laser pulse incident upon a Nano-Micro array (NMA) with substrate incorporated. This scheme is able to realize effectively electron acceleration and colliding geometry. Both the γ-ray flash and positron bunch are then generated with high conversion efficiency. At laser intensity of I_0 = 8 times 10^{23} W/cm^2, ~27% of the laser energy is transferred successfully into the γ-rays, and ~0.7% of the laser energy into the positrons. As a consequence, ultra-short (~440 as) and ultra-brilliant (~10^{24} photons s^{-1} mm^{-2} mrad^{-2} per 0.1%BW @ 15 MeV) γ-ray burst, and high-yield (1.48 times 10^{11}) and overdense (~10^{22} cm^{-3}) positron bunch are generated. We found a sub-linear scaling of laser-to-photon conversion efficiency (proportional to I_0^{0.75}) and a super-linear scaling of laser-to-positron conversion efficiency (proportional to I_0^{2.5}) with the laser intensity. Multi-dimensional particle-in-cell simulations show that particle (γ photon and positron) generation can be manipulated by laser-focusing position, and NMA's length and spacing. Optimal conditions for particle generation in NMAs are obtained, indicating that microwire array has the advantage over nanowire array in particle generation in the extreme laser fields. Furthermore, positron annihilation effect in high-energy-density (HED) environment is discussed. The scheme using NMAs would provide effective avenues toward investigating attosecond nuclear science and HED physics with the coming 10 PW laser facilities.