论文标题
从量子源压缩到量子热力学
From Quantum Source Compression to Quantum Thermodynamics
论文作者
论文摘要
本文解决了量子信息理论领域的问题。论文的第一部分以一般量子源模型及其压缩的具体定义打开,并且每个后章都将特定源模型的压缩作为最初定义的一般模型的特殊情况。首先,我们发现了一般混合状态源的最佳压缩率,该源包括特殊情况,所有先前研究的模型,例如舒马赫的纯净和集合来源以及其他混合状态集成模型。为了在可见光和盲目的Schumacher集合模型之间进行插值,我们找到了纠缠和量子速率的最佳压缩率区域。稍后,我们研究了著名的Slepian-wolf问题的经典量子变化以及量子状态重新分布的集合模型,我们发现,考虑到每本副本保真度以及可实现的单词且可实现的单词且可符合的功能连续性的最佳压缩率,这些界限与相应的范围中出现的功能的连续性相匹配。 论文的第二部分围绕量子热力学的信息理论观点。我们从具有多个非公告费用的量子系统的资源理论观点开始。随后,我们将此资源理论框架应用于研究传统的热力学设置,该设置具有多个由主系统,热浴和电池组成的多个非公认的保守量,以存储各种保守数量的系统。我们陈述了该系统的热力学定律,并表明在系统的某些转换中发生纯粹的量子效应,也就是说,只有在系统的最终状态与热浴之间存在量子相关性时,某些转换才可行。
This thesis addresses problems in the field of quantum information theory. The first part of the thesis is opened with concrete definitions of general quantum source models and their compression, and each subsequent chapter addresses the compression of a specific source model as a special case of the initially defined general models. First, we find the optimal compression rate of a general mixed state source which includes as special cases all the previously studied models such as Schumacher's pure and ensemble sources and other mixed state ensemble models. For an interpolation between the visible and blind Schumacher's ensemble model, we find the optimal compression rate region for the entanglement and quantum rates. Later, we study the classical-quantum variation of the celebrated Slepian-Wolf problem and the ensemble model of quantum state redistribution for which we find the optimal compression rate considering per-copy fidelity and single-letter achievable and converse bounds matching up to continuity of functions which appear in the corresponding bounds. The second part of the thesis revolves around information theoretical perspective of quantum thermodynamics. We start with a resource theory point of view of a quantum system with multiple non-commuting charges. Subsequently, we apply this resource theory framework to study a traditional thermodynamics setup with multiple non-commuting conserved quantities consisting of a main system, a thermal bath and batteries to store various conserved quantities of the system. We state the laws of the thermodynamics for this system, and show that a purely quantum effect happens in some transformations of the system, that is, some transformations are feasible only if there are quantum correlations between the final state of the system and the thermal bath.