论文标题

霍夫曼定理:新发现的重新访问

A Hoffman's Theorem: a revisit with new discovery

论文作者

Wang, Jianfeng, Wang, Jing, Brunetti, Maurizio

论文摘要

1972年,A。J。Hoffman证明了他的著名定理,这些定理是关于非阴性对称积分矩阵的光谱半径的限制点,小于$ \ sqrt {2+ \ sqrt {5}} $。在本文中,在给出了霍夫曼定理的新版本之后,我们获得了两个普遍的版本,适用于具有分数元素的非阴性对称矩阵。作为推论,我们获得了另一个替代版本,内容涉及(无标志性的)图形矩阵的光谱半径小于$ 2+ {\ tiny \ frac {{\;} 1 {\;}}}} {3} {3} {3} 6 \ sqrt {33})^{\ frac {{{\;} 1 {\;}}} {3}}}} +(54 + 6 \ sqrt {33})^{\ frac {\ frac {{\;} {\;} 1 {\;}}}}}}}我们还讨论了如何采用我们的方法来研究等缘线。

In 1972, A. J. Hoffman proved his celebrated theorem concerning the limit points of spectral radii of non-negative symmetric integral matrices less than $\sqrt{2+\sqrt{5}}$. In this paper, after giving a new version of Hoffman's theorem, we get two generalized versions of it applicable to non-negative symmetric matrices with fractional elements. As a corollary, we obtain another alternative version about the limit points of spectral radii of (signless) Laplacian matrices of graphs less than $2+ {\tiny \frac{{\;}1{\;}}{3}\left((54 - 6\sqrt{33})^{\frac{{\;}1{\;}}{3}} + (54 + 6\sqrt{33})^{\frac{{\;} 1{\;}}{3}} \right)}$. We also discuss how our approach could be fruitfully employed to investigate equiangular lines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源