论文标题

Mumford-Tate的分类,可合理的极化霍奇结构

Classification of the Mumford--Tate Groups of Rational Polarizable Hodge Structures

论文作者

Milne, James S.

论文摘要

令G为坦纳基人类别的可极化理性霍奇结构类别的亲代gene群。我们表明,G的派生组的G的商是Serre组,G的派生组是G的伴随组的简单连接覆盖,并且伴随组G是特定简单的代数组的产物。由于Mumford-Tate群体正是G的代数商,因此也描述了它们。

Let G be the pro-algebraic group attached to the tannakian category of polarizable rational Hodge structures. We show that the quotient of G by its derived group is the Serre group, the derived group of G is the simply connected covering of the adjoint group of G, and that the adjoint group G is a product of specific simple algebraic groups. As the Mumford--Tate groups are exactly the algebraic quotients of G, this also describes them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源