论文标题

使用多模式深度学习在社交媒体上检测医学错误信息

Detecting Medical Misinformation on Social Media Using Multimodal Deep Learning

论文作者

Wang, Zuhui, Yin, Zhaozheng, Argyris, Young Anna

论文摘要

在2019年,自1992年以来,可预防疫苗的疾病爆发达到了美国的最高数量。医疗错误信息(例如通过社交媒体传播的抗霉素含量)与疫苗延迟和拒绝的增加有关。我们的总体目标是开发一种自动检测器,以抵消抗菌信息对公共卫生的负面影响。尽管存在图像共享应用程序迅速增长(例如Instagram),但很少有现有的检测系统考虑了社交媒体帖子(图像,文本和标签)的多模式,而是专注于文本组件。结果,现有系统不足以检测这些较新平台上发布的带有大量视觉组件(例如,图像)的反vaccine消息。为了解决这个问题,我们提出了一个深入学习网络,该网络利用视觉和文本信息。创建了一种新的语义和任务级别的注意机制,以帮助我们的模型专注于信号反激素消息的帖子的基本内容。提出的模型由三个分支组成,可以为预测生成全面的融合功能。此外,提出了一种合奏方法,以进一步提高最终预测准确性。为了评估拟议模型的性能,一个现实世界中的社交媒体数据集由2016年1月至2019年10月之间从Instagram收集了30,000多个样本组成。我们的30个实验结果表明,最终网络的实验可以达到97%以上的测试准确性,并胜过其他相关模型,表明它可以检测大量的抗抗心素每日发布。实现代码可在https://github.com/wzhings/antivaccine_detection上找到。

In 2019, outbreaks of vaccine-preventable diseases reached the highest number in the US since 1992. Medical misinformation, such as antivaccine content propagating through social media, is associated with increases in vaccine delay and refusal. Our overall goal is to develop an automatic detector for antivaccine messages to counteract the negative impact that antivaccine messages have on the public health. Very few extant detection systems have considered multimodality of social media posts (images, texts, and hashtags), and instead focus on textual components, despite the rapid growth of photo-sharing applications (e.g., Instagram). As a result, existing systems are not sufficient for detecting antivaccine messages with heavy visual components (e.g., images) posted on these newer platforms. To solve this problem, we propose a deep learning network that leverages both visual and textual information. A new semantic- and task-level attention mechanism was created to help our model to focus on the essential contents of a post that signal antivaccine messages. The proposed model, which consists of three branches, can generate comprehensive fused features for predictions. Moreover, an ensemble method is proposed to further improve the final prediction accuracy. To evaluate the proposed model's performance, a real-world social media dataset that consists of more than 30,000 samples was collected from Instagram between January 2016 and October 2019. Our 30 experiment results demonstrate that the final network achieves above 97% testing accuracy and outperforms other relevant models, demonstrating that it can detect a large amount of antivaccine messages posted daily. The implementation code is available at https://github.com/wzhings/antivaccine_detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源