论文标题

通过学习,有效的基于雅各布的逆运动运动学,通过学习软机器人的SIM到真实转移

Efficient Jacobian-Based Inverse Kinematics with Sim-to-Real Transfer of Soft Robots by Learning

论文作者

Fang, Guoxin, Tian, Yingjun, Yang, Zhi-Xin, Geraedts, Jo M. P., Wang, Charlie C. L.

论文摘要

本文提出了一种有效的基于学习的方法,可以在具有高度非线性变形的软机器人上解决反向运动学(IK)问题。有效计算此类机器人IK的主要挑战是由于缺乏向前或反向运动学的分析公式。为了应对这一挑战,我们采用神经网络来学习远期运动学的映射功能,也是该功能的雅各布式的。结果,可以应用基于雅各布的迭代来解决IK问题。制定了SIM到现实的培训策略,以使这种方法更加实用。我们首先在模拟环境中生成大量样品,以学习软机器人设计的运动学和雅各布网络。此后,采用了一个可区分神经元的SIM对层层将模拟的结果映射到物理硬件,在该硬件中可以从硬件上生成的非常有限的训练样本中学到此SIM模型。我们的方法的有效性已在气动驱动的软机器人上进行了验证,用于跟随路径和交互式定位。

This paper presents an efficient learning-based method to solve the inverse kinematic (IK) problem on soft robots with highly non-linear deformation. The major challenge of efficiently computing IK for such robots is due to the lack of analytical formulation for either forward or inverse kinematics. To address this challenge, we employ neural networks to learn both the mapping function of forward kinematics and also the Jacobian of this function. As a result, Jacobian-based iteration can be applied to solve the IK problem. A sim-to-real training transfer strategy is conducted to make this approach more practical. We first generate a large number of samples in a simulation environment for learning both the kinematic and the Jacobian networks of a soft robot design. Thereafter, a sim-to-real layer of differentiable neurons is employed to map the results of simulation to the physical hardware, where this sim-to-real layer can be learned from a very limited number of training samples generated on the hardware. The effectiveness of our approach has been verified on pneumatic-driven soft robots for path following and interactive positioning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源