论文标题

有关连接的贪婪边缘着色的注释

A note on connected greedy edge colouring

论文作者

Bonamy, Marthe, Groenland, Carla, Muller, Carole, Narboni, Jonathan, Pekárek, Jakub, Wesolek, Alexandra

论文摘要

在给定的图形$ g $边缘的订购后,贪婪的边缘着色过程将最小的可用颜色分配给每个边缘。如此涉及的最小颜色数量是色度指数$χ'(g)$,最大值是所谓的Grundy色度指数。在这里,我们对边缘订购以连接方式构建图形的有限情况感兴趣。令$χ_c'(g)$为这种订购后涉及的最小颜色数量。我们表明,确定$χ_c'(g)>χ'(g)$是NP-HARD。我们证明$χ'(g)=χ_c'(g)$如果$ g $是两部分,而$χ_c'(g)\ leq 4 $如果$ g $是supubic。

Following a given ordering of the edges of a graph $G$, the greedy edge colouring procedure assigns to each edge the smallest available colour. The minimum number of colours thus involved is the chromatic index $χ'(G)$, and the maximum is the so-called Grundy chromatic index. Here, we are interested in the restricted case where the ordering of the edges builds the graph in a connected fashion. Let $χ_c'(G)$ be the minimum number of colours involved following such an ordering. We show that it is NP-hard to determine whether $χ_c'(G)>χ'(G)$. We prove that $χ'(G)=χ_c'(G)$ if $G$ is bipartite, and that $χ_c'(G)\leq 4$ if $G$ is subcubic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源