论文标题

多个正交多项式相对于高斯的超几何函数

Multiple orthogonal polynomials with respect to Gauss' hypergeometric function

论文作者

Lima, Helder, Loureiro, Ana

论文摘要

相对于两个涉及高斯$(0,1)$的涉及高斯高几幅功能的重量函数,I型和II型的多个多项式多项式集得到了研究。这种类型的多项式在研究Ginibre矩阵产物的奇异值中直接应用,在分析Painlevé方程的理性溶液中,并与分支的持续分数和Combinatorics中的总阳性问题有关。两对正交性措施被证明是一个尼基蛋白系统,并满足了矩阵皮尔逊型微分方程。重点放在索引位于阶梯线上的多项式上,为此表明,变量上的差异化可以改变参数,因此满足了Hahn的属性。我们获得了I型I型Rodrigues-type公式,而对II型多项式(也称为2 $ 2 $ - 正交多项式)给出了更详细的表征,其中包括:作为终止的超角序列,三阶微分方程式和三阶复发相关的显式表达。其复发系数的渐近行为模拟了Jacobi-Piñeiro多项式的渐变系数,其基于其零渐近分布和附近的Mehler-Heine渐近公式。参数的特定选择在某些已知系统中退化,例如Jacobi-piñeiro的特殊情况,jacobi-type $ 2 $ - 正交的多项式$ 2 $ - 单次多项式,以及三倍对称性Hahn-symmetric Hahn-classical plassical polynomials的立方分解组成部分。同样考虑的是与其他已知多项式集合的汇合关系,例如相对于Tricomi函数的多个正交多项式。

A new set of multiple orthogonal polynomials of both type I and type II with respect to two weight functions involving Gauss' hypergeometric function on the interval $(0,1)$ is studied. This type of polynomials have direct applications in the investigation of singular values of products of Ginibre matrices, in the analysis of rational solutions to Painlevé equations and are connected with branched continued fractions and total positivity problems in combinatorics. The pair of orthogonality measures is shown to be a Nikishin system and to satisfy a matrix Pearson-type differential equation. The focus is on the polynomials whose indexes lie on the step line, for which it is shown that differentiation on the variable gives a shift on the parameters, therefore satisfying Hahn's property. We obtain a Rodrigues-type formula for type I, while a more detailed characterisation is given for the type II polynomials (aka $2$-orthogonal polynomials) which include: an explicit expression as a terminating hypergeometric series, a third-order differential equation, and a third-order recurrence relation. The asymptotic behaviour of their recurrence coefficients mimics those of Jacobi-Piñeiro polynomials, based on which, their zero asymptotic distribution and a Mehler-Heine asymptotic formula near the origin are given. Particular choices on the parameters degenerate in some known systems such as special cases of the Jacobi-Piñeiro polynomials, Jacobi-type $2$-orthogonal polynomials, and components of the cubic decomposition of threefold symmetric Hahn-classical polynomials. Equally considered are confluence relations to other known polynomial sets, such as multiple orthogonal polynomials with respect to Tricomi functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源