论文标题
均匀的稳定性,用于空间污染,延伸的fokker-planck方程
Uniform stability for a spatially-discrete, subdiffusive Fokker-Planck equation
论文作者
论文摘要
我们证明了分数fokker-Planck方程的空间离散的盖尔金解的稳定性估计,从而在几个方面改善了先前的结果。我们的主要目的是确定稳定性在(0,1] $中的分数扩散指数$α\中均匀界定。此外,我们考虑到存在不均匀术语的存在,并显示出对Galerkin的方法梯度的稳定性估计值。作为Galerkin的方法,作为副产品的证明,错误的证据限制了标准的有限元素。
We prove stability estimates for the spatially discrete, Galerkin solution of a fractional Fokker-Planck equation, improving on previous results in several respects. Our main goal is to establish that the stability constants are bounded uniformly in the fractional diffusion exponent $α\in(0,1]$. In addition, we account for the presence of an inhomogeneous term and show a stability estimate for the gradient of the Galerkin solution. As a by-product, the proofs of error bounds for a standard finite element approximation are simplified.