论文标题

具有神经网络解释的震颤波形降解和自动位置

Tremor Waveform Denoising and Automatic Location with Neural Network Interpretation

论文作者

Hulbert, Claudia, Jolivet, Romain, Gardonio, Blandine, Johnson, Paul, Ren, Christopher X., Rouet-Leduc, Bertrand

论文摘要

主动断层释放通过板运动通过一系列滑动模式施加的构造应力,从慢速,无性滑移到动态,地震事件。缓慢的地震通常与构造震颤,非冲动信号有关,这些信号很容易被掩埋在地震噪声中并且未被发现。 我们提出了一种旨在改善隐藏在地震噪声中的震颤的检测和位置的新方法。在通过经典的卷积神经网络识别震颤后,我们依靠神经网络归因来提取核心震颤标志和Denoise输入波形。然后,我们使用这些清洁的波形来定位具有标准阵列技术的震颤。 我们将此方法应用于卡斯卡迪亚俯冲带,在那里我们确定与现有目录一致的震颤贴片。特别是,我们表明,由神经网络归因分析产生的清洁信号对应于与局部估计相一致的地球外壳中传播的波形和地幔。这种方法使我们能够提取隐藏在噪声中的小信号,因此可以比现有目录中找到更多的震颤。

Active faults release tectonic stress imposed by plate motion through a spectrum of slip modes, from slow, aseismic slip, to dynamic, seismic events. Slow earthquakes are often associated with tectonic tremor, non-impulsive signals that can easily be buried in seismic noise and go undetected. We present a new methodology aimed at improving the detection and location of tremors hidden within seismic noise. After identifying tremors with a classic convolutional neural network, we rely on neural network attribution to extract core tremor signatures and denoise input waveforms. We then use these cleaned waveforms to locate tremors with standard array-based techniques. We apply this method to the Cascadia subduction zone, where we identify tremor patches consistent with existing catalogs. In particular, we show that the cleaned signals resulting from the neural network attribution analysis correspond to a waveform traveling in the Earth's crust and mantle at wavespeeds consistent with local estimates. This approach allows us to extract small signals hidden within the noise, and therefore to locate more tremors than in existing catalogs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源