论文标题
五数式准学重力和准磁磁力的热力学的表面术语与非线性电动力学结合
Surface Terms of Quintic Quasitopological Gravity and Thermodynamics of Quasi-Topological Magnetic Brane Coupled to Nonlinear Electrodynamics
论文作者
论文摘要
对于没有明确定义的变分原理的五重质学作用,我们引入了一个表面术语,该术语对于具有平坦边界的时空,使该动作定义明确。此外,我们研究了上述重力与非线性对数和指数电动力学的数值解。它没有地平线和曲率,除了$ r = 0 $的一个圆锥形奇异性,带有赤字角$ δϕ $。同样,我们发现了静态五数式准学引力的非同伴差异的反术。使用此反术可以计算五五次准学重力的有限作用和保守量。
For the the quintic quasitopological action which has no well-defined variational principle, we introduced a surface term that for a spacetime with flat boundaries make the action well-defined. Moreover, we investigated the numerical solutions of the above-mentioned gravity coupled to the nonlinear logarithmic and exponential electrodynamics. It has no horizon and curvature except one conical singularity at $r=0$ with a deficit angle $δϕ$. Also we found the counterterm which removes non-logarithmic divergences for the static quintic quasitopological gravity. Using this counterterm one can calculate a finite action and conserved quantities for the quintic quasitopological gravity.