论文标题
中心,微量功能和循环共同体学
Centres, trace functors, and cyclic cohomology
论文作者
论文摘要
我们研究了(左或右)Hopf algebroid的模块和综合物的单型类别,以及相应类别的Bimodule类别中心,以及相应的分类等效性,与反迄今drinfel'd Controinfel'd Contramodules和Anti-drinter-drinter-Drinter-Drinfelse conterter-drinfel'd Modules相应地相应地相应。这直接连接到所讨论的模块和综合的单体类别上的痕量函子,这又允许恢复(或定义)循环算子启用循环共同体。
We study the biclosedness of the monoidal categories of modules and comodules over a (left or right) Hopf algebroid, along with the bimodule category centres of the respective opposite categories and a corresponding categorical equivalence to anti Yetter-Drinfel'd contramodules and anti Yetter-Drinfel'd modules, respectively. This is directly connected to the existence of a trace functor on the monoidal categories of modules and comodules in question, which in turn allows to recover (or define) cyclic operators enabling cyclic cohomology.