论文标题

TSGCNET:用于3D牙科模型分割的二流图形通用网络的歧视性几何特征学习

TSGCNet: Discriminative Geometric Feature Learning with Two-Stream GraphConvolutional Network for 3D Dental Model Segmentation

论文作者

Zhang, Lingming, Zhao, Yue, Meng, Deyu, Cui, Zhiming, Gao, Chenqiang, Gao, Xinbo, Lian, Chunfeng, Shen, Dinggang

论文摘要

精确从数字化的3D牙科模型中细分牙齿的能力是计算机辅助正畸手术计划中的重要任务。迄今为止,基于深度学习的方法已被普遍用于处理此任务。最新的方法直接将3D输入的原始属性(即网状细胞的坐标和正常向量)训练,以训练一个单际网络进行完全自动化的牙齿分割。但是,这具有忽略这些原始属性提供的不同几何含义的缺点。这个问题可能会使网络学习歧视性几何特征,并在牙科模型上产生许多孤立的错误预测。在这个问题上,我们提出了一个两流图卷积网络(TSGCNET),以从不同的几何属性中学习多视图几何信息。我们的TSGCNET采用了以输入感知方式设计的两个图形学习流,以分别从坐标和正常向量提取更具歧视性的高级几何表示。从设计的两个不同的流中学到的这些特征表示形式进一步融合,以整合细胞密集的预测任务的多视图互补信息。我们在3D口内扫描仪获得的牙科模型的实际患者数据集上评估了我们提出的TSGCNET,实验结果表明,我们的方法显着胜过3D形状分割的最先进方法。

The ability to segment teeth precisely from digitized 3D dental models is an essential task in computer-aided orthodontic surgical planning. To date, deep learning based methods have been popularly used to handle this task. State-of-the-art methods directly concatenate the raw attributes of 3D inputs, namely coordinates and normal vectors of mesh cells, to train a single-stream network for fully-automated tooth segmentation. This, however, has the drawback of ignoring the different geometric meanings provided by those raw attributes. This issue might possibly confuse the network in learning discriminative geometric features and result in many isolated false predictions on the dental model. Against this issue, we propose a two-stream graph convolutional network (TSGCNet) to learn multi-view geometric information from different geometric attributes. Our TSGCNet adopts two graph-learning streams, designed in an input-aware fashion, to extract more discriminative high-level geometric representations from coordinates and normal vectors, respectively. These feature representations learned from the designed two different streams are further fused to integrate the multi-view complementary information for the cell-wise dense prediction task. We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners, and experimental results demonstrate that our method significantly outperforms state-of-the-art methods for 3D shape segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源