论文标题
ROCUS:通过抽样理解机器人控制器的理解
RoCUS: Robot Controller Understanding via Sampling
论文作者
论文摘要
随着机器人在复杂的情况下部署,工程师和最终用户必须对其行为,能力和局限性产生整体理解。某些行为是通过目标函数直接优化的。它们通常包括成功率,完成时间或能耗。其他行为 - 例如,避免碰撞,轨迹平滑度或运动透明度 - 通常是出现的,但对于安全且值得信赖的部署同样重要。设计一个优化机器人行为各个方面的目标很难。在本文中,我们主张对各种各样的行为进行系统分析,以整体理解机器人控制器,并提出了一个框架Rocus,该框架使用贝叶斯后方采样来查找机器人控制器表现出用户指定行为的情况,例如高度繁重的运动。我们使用ROCUS在两个域(2D导航和7个自由度的臂达到7个域)上分析三个控制器类(深度学习模型,迅速探索随机树和动态系统公式),并发现了进一步的见解,以进一步了解我们对这些控制器的理解并最终改善其设计。
As robots are deployed in complex situations, engineers and end users must develop a holistic understanding of their behaviors, capabilities, and limitations. Some behaviors are directly optimized by the objective function. They often include success rate, completion time or energy consumption. Other behaviors -- e.g., collision avoidance, trajectory smoothness or motion legibility -- are typically emergent but equally important for safe and trustworthy deployment. Designing an objective which optimizes every aspect of robot behavior is hard. In this paper, we advocate for systematic analysis of a wide array of behaviors for holistic understanding of robot controllers and, to this end, propose a framework, RoCUS, which uses Bayesian posterior sampling to find situations where the robot controller exhibits user-specified behaviors, such as highly jerky motions. We use RoCUS to analyze three controller classes (deep learning models, rapidly exploring random trees and dynamical system formulations) on two domains (2D navigation and a 7 degree-of-freedom arm reaching), and uncover insights to further our understanding of these controllers and ultimately improve their designs.