论文标题
积聚特性可以区分裸奇异,虫洞和黑洞吗?
Can accretion properties distinguish between a naked singularity, wormhole and black hole?
论文作者
论文摘要
我们首先提出了一种数学新颖性,即标题中提到的三个几何和拓扑不同的对象可以通过坐标转换,三角标识和复杂的灯芯旋转的结合来从Jordan框架真空Brans I解决方案中精确地获得。接下来,我们使用Page-Thorne模型研究它们各自的积分属性,该模型专门研究$ r \ geq r _ {\ text {ms}} $(粒子轨道的最低稳定半径),而单次脉络/喉咙/喉咙/ hivel $ r <r <r _ r _ {\ text}}此外,发现其页面thorne效率$ε$随着$ r _ {\ text {ms}} $的减少而增加,并且Schwarzschild Black Hole(SBH)也产生$ε= 0.0572 $。但是在奇异极限$ r \ rightarrow r_ {s} $(奇异的半径)中,我们有$ε\ rightarrow 1 $,与[10]中构建的裸奇异性效率达成$ 100 \%$ $效率。我们表明,差分吸积光度$ \ frac {d \ mathcal {l} _ {\ infty}} {d \ ln {r}} $ buchdahl naked Singularity(bns)始终比SBH的伊德丁顿亮度更大,而伊迪顿的亮度始终大于$ l _ {\ text {edd}}}^{\ infty} $对于$ r \ rightArrow r_ {s} $可能是任意大的,这是由于标量字段$ ϕ $在$(r_ {s},\ infty)$中定义的标量字段$ ϕ $。可以得出结论,BNS积聚概况仍然可以高于宇宙中常规物体的概况。
We first advance a mathematical novelty that the three geometrically and topologically distinct objects mentioned in the title can be exactly obtained from the Jordan frame vacuum Brans I solution by a combination of coordinate transformations, trigonometric identities and complex Wick rotation. Next, we study their respective accretion properties using the Page-Thorne model which studies accretion properties exclusively for $r\geq r_{\text{ms}}$ (the minimally stable radius of particle orbits), while the radii of singularity/ throat/ horizon $r<r_{\text{ms}}$. Also, its Page-Thorne efficiency $ε$ is found to increase with decreasing $r_{\text{ms}}$ and also yields $ε=0.0572$ for Schwarzschild black hole (SBH). But in the singular limit $r\rightarrow r_{s}$ (radius of singularity), we have $ε\rightarrow 1$ giving rise to $100 \%$ efficiency in agreement with the efficiency of the naked singularity constructed in [10]. We show that the differential accretion luminosity $\frac{d\mathcal{L}_{\infty}}{d\ln{r}}$ of Buchdahl naked singularity (BNS) is always substantially larger than that of SBH, while Eddington luminosity at infinity $L_{\text{Edd}}^{\infty}$ for BNS could be arbitrarily large at $r\rightarrow r_{s}$ due to the scalar field $ϕ$ that is defined in $(r_{s}, \infty)$. It is concluded that BNS accretion profiles can still be higher than those of regular objects in the universe.