论文标题
一种具有不确定性量化的快速多保真方法,用于复杂数据相关性:应用于涡流引起的海洋立管振动
A fast multi-fidelity method with uncertainty quantification for complex data correlations: Application to vortex-induced vibrations of marine risers
论文作者
论文摘要
我们通过在模态空间中工作以提取适当的相关函数来开发一种快速的多效率建模方法,用于高保真数据之间非常复杂的相关性。我们应用这种方法来推断柔性海洋立管在跨流中的运动幅度,但要受到涡旋诱导的振动(VIV)的影响。 VIV是由流动中的绝对不稳定性驱动的,该流量施加了频率(曲路)定律,该定律需要与结构的阻抗相匹配。由于增加的质量力的快速参数变化很容易实现。结果,立管空间响应的波数在不确定性的狭窄带中。因此,波数预测的误差会导致沿立管响应幅度的形状显着的相关误差,从而使低效率数据和高效率数据之间的相关性非常复杂。如本文所述,在半经验计算机代码Viva提供的低保真数据中的密集数据可以与模态空间相关联,几乎没有高保真数据,从实验或完整分辨的CFD仿真中获得,以纠正相位和振幅,以纠正与正确形式响应的整体响应的预测。我们还使用贝叶斯建模量化了预测的不确定性,并利用这种不确定性来制定主动学习策略,以提供提供高保真度测量值的传感器的最佳位置。
We develop a fast multi-fidelity modeling method for very complex correlations between high- and low-fidelity data by working in modal space to extract the proper correlation function. We apply this method to infer the amplitude of motion of a flexible marine riser in cross-flow, subject to vortex-induced vibrations (VIV). VIV are driven by an absolute instability in the flow, which imposes a frequency (Strouhal) law that requires a matching with the impedance of the structure; this matching is easily achieved because of the rapid parametric variation of the added mass force. As a result, the wavenumber of the riser spatial response is within narrow bands of uncertainty. Hence, an error in wavenumber prediction can cause significant phase-related errors in the shape of the amplitude of response along the riser, rendering correlation between low- and high-fidelity data very complex. Working in modal space as outlined herein, dense data from low-fidelity data, provided by the semi-empirical computer code VIVA, can correlate in modal space with few high-fidelity data, obtained from experiments or fully-resolved CFD simulations, to correct both phase and amplitude and provide predictions that agree very well overall with the correct shape of the amplitude response. We also quantify the uncertainty in the prediction using Bayesian modeling and exploit this uncertainty to formulate an active learning strategy for the best possible location of the sensors providing the high fidelity measurements.