论文标题

两阶段随机优化框架可帮助参与连续能源市场的可变资源生成器的不确定性下的决策

Two-Stage Stochastic Optimization Frameworks to Aid in Decision-Making Under Uncertainty for Variable Resource Generators Participating in a Sequential Energy Market

论文作者

Al-Lawati, Razan A. H., Crespo-Vazquez, Jose L., Faiz, Tasnim Ibn, Fang, Xin, Noor-E-Alam, Md.

论文摘要

当很少获得有关风能可用性和市场价格的信息时,通常会提前做出可变可再生资源生成者承诺的决定。已经发布了许多研究,推荐了解决此问题的各种框架。但是,这些框架受到限制,因为它们没有考虑生产者可以参与的所有市场。此外,当前的随机编程模型不允许随着更准确的信息可用而更新不确定性数据。这项工作建议了两个决策框架,用于参与日期,盘中,预备和平衡市场的风能发电机。第一个框架是一种两阶段的随机凸优化方法,在该方法中,方案无关和方案依赖性决策都是同时做出的。第二个框架是一个由四个两阶段随机优化模型组成的系列,其中每个模型中的结果添加到每个后续模型中,允许在决策者使用更多信息时更新方案。在仿真实验中,多相框架的性能优于每次运行的单相,导致平均利润增长7%。拟议的优化框架有助于更好的决策,同时解决与可变资源生成器有关的不确定性并最大化投资回报率。

Decisions for a variable renewable resource generators commitment in the energy market are typically made in advance when little information is obtainable about wind availability and market prices. Much research has been published recommending various frameworks for addressing this issue. However, these frameworks are limited as they do not consider all markets a producer can participate in. Moreover, current stochastic programming models do not allow for uncertainty data to be updated as more accurate information becomes available. This work proposes two decision-making frameworks for a wind energy generator participating in day-ahead, intraday, reserve, and balancing markets. The first framework is a two-stage stochastic convex optimization approach, where both scenario-independent and scenario-dependent decisions are made concurrently. The second framework is a series of four two-stage stochastic optimization models wherein the results from each model feed into each subsequent model allowing for scenarios to be updated as more information becomes available to the decision-maker. In the simulation experiments, the multi-phase framework performs better than the single-phase in every run, and results in an average profit increase of 7%. The proposed optimization frameworks aid in better decision-making while addressing uncertainty related to variable resource generators and maximize the return on investment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源