论文标题

在固有磁性半导体中建模巨大的光诱导的自旋极性子

Modeling huge photoinduced spin polarons in intrinsic magnetic semiconductors

论文作者

van Kooten, S. C. P., Gratens, X., Henriques, A. B.

论文摘要

在固有的磁半导体中,单个光子的吸收可以产生一个自旋极化子,其磁矩达到了数千个Bohr磁子[1.2]。在这里,我们使用蒙特卡洛模拟研究了光诱导的自旋极化子。在抗磁磁半导体中,光诱导的自旋极性子是在整个温度间隔中最有效地产生的,直到相变为相变,而在铁电磁半导体中,只能诱导更大的自旋极性子,但只能在相变温度周围进行光诱导。由于蒙特卡洛模拟在计算上很昂贵,因此我们基于魏斯场理论开发了一个分析模型。尽管Weiss模型不提供像蒙特卡洛模拟一样多的信息,例如自旋纹理和波动,但它产生的公式可用于立即估算许多固有磁性半导体中预期的光诱导的自旋极性大小。

In intrinsic magnetic semiconductors, the absorption of a single photon can generate a spin polaron, whose magnetic moment reaches many thousands of Bohr magnetons [1.2]. Here we investigate photoinduced spin polarons, using Monte Carlo simulations. In antiferromagnetic semiconductors, photoinduced spin polarons are most efficiently generated in the whole temperature interval up to the phase transition, whereas in ferromagnetic semiconductors much larger spin polarons can be photoinduced, but only around the phase transition temperature. Because Monte Carlo simulations are computationally expensive, we developed an analytical model, based on the Weiss field theory. Although the Weiss model does not provide as much information as a Monte Carlo simulation, such as spin texture and fluctuations, it yields formulas that can be used to estimate instantly the expected photoinduced spin polaron size in many intrinsic magnetic semiconductors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源