论文标题

o(d,d)和字符串$α'$扩展:障碍物

O(D,D) and the string $α'$ expansion: An obstruction

论文作者

Hronek, Stanislav, Wulff, Linus

论文摘要

双场理论(DFT)试图使弦理论的O(d,d)T偶(t)对称体现在降低D-torus之前。众所周知,超级重力可以以O(d,d)的协变方式进行配制,并且显着地对$α'$的第一阶仍然是真实的。我们设置了一种系统的方法来分析O(d,d)不变性,在字段中按顺序按顺序进行工作,我们执行订单$α'^3 $。在$α'$的订单上,我们恢复已知的Riemann平方不变性,而在$α'^2 $的订单中,我们没有发现独立的不变性。这与字符串理论的$α'$扩展兼容。但是,在$α'^3 $的顺序下,我们表明又没有o(d,d)不变,这与所有字符串理论都具有四分之一的riemann不变性,系数与$ζ(3)$相称。我们得出的结论是,DFT和类似框架无法捕获字符串理论中的完整$α'$扩展。

Double Field Theory (DFT) is an attempt to make the O(d,d) T-duality symmetry of string theory manifest, already before reducing on a d-torus. It is known that supergravity can be formulated in an O(D,D) covariant way, and remarkably this remains true to the first order in $α'$. We set up a systematic way to analyze O(D,D) invariants, working order by order in fields, which we carry out up to order $α'^3$. At order $α'$ we recover the known Riemann squared invariant, while at order $α'^2$ we find no independent invariant. This is compatible with the $α'$ expansion in string theory. However, at order $α'^3$ we show that there is again no O(D,D) invariant, in contradiction to the fact that all string theories have a quartic Riemann invariant with coefficient proportional to $ζ(3)$. We conclude that DFT and similar frameworks cannot capture the full $α'$ expansion in string theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源