论文标题
对称和kähler-恩斯坦·范诺多边形
Symmetric and Kähler--Einstein Fano polygons
论文作者
论文摘要
我们研究了\ emph {singular}对称和kähler--因源 - 范诺的多型。更准确地说,我们表明,每个对称的Fano多层都是Kähler-依因斯坦(Kähler)概括了Batyrev和Selivanova的作品,并详细研究了对称的自动形态群体和Kähler-kähler-ineinstein fano多边形。特别是,$ gl_2(\ mathbb {z})$的每个金额子组都是Kähler-ineinstein fano polygon的自动形态组。
We investigate \emph{singular} symmetric and Kähler--Einstein Fano polytopes. More precisely, we show that every symmetric Fano polytope is Kähler--Einstein generalizing the work by Batyrev and Selivanova, and study the automorphism groups of symmetric and Kähler--Einstein Fano polygons in detail. In particular, every finte subgroup of $GL_2(\mathbb{Z})$ is an automorphism group of a Kähler--Einstein Fano polygon.