论文标题

循环量子校正的标量扰动和稳定性Kruskal黑洞

Scalar Perturbations and Stability of a Loop Quantum Corrected Kruskal Black Hole

论文作者

Daghigh, Ramin G., Green, Michael D., Kunstatter, Gabor

论文摘要

我们研究了一个新的环量子重力的无质量标量场扰动,该重力动机是由Ashtekar {\ it等}提出的常规黑洞。 121,241301(2018),Phys.Rev.D 98,126003(2018)]。这个黑洞的时空以其渐近特性区别:在Schwarzschild坐标中,即使时空是渐近时期的平坦,公制函数之一也为$ r \ to \ infty $。我们表明,尽管使用Schwarzschild坐标时,尽管这种异常的渐近行为,但在使用Schwarzschild坐标时,准模式电位在任何地方都得到了很好的定义。我们提出了一种有用的度量标准形式,这使我们能够通过可管理的计算时间产生高精度的准模式频率和RINGDOWN波形。我们的结果表明,对于无质量标量场扰动,这种黑洞模型是稳定的。我们表明,与Schwarzschild黑洞相比,该黑洞以较高的频率和较小的阻尼振荡。我们还观察到这个黑洞模型和Schwarzschild Black Hole之间的电环波形尾部有质量差异。这表明量子校正会影响距黑洞大距离的波的行为。

We investigate the massless scalar field perturbations of a new loop quantum gravity motivated regular black hole proposed by Ashtekar {\it et al.} in [Phys.Rev.Lett. 121, 241301 (2018), Phys.Rev.D 98, 126003 (2018)]. The spacetime of this black hole is distinguished by its asymptotic properties: in Schwarzschild coordinates one of the metric functions diverges as $r\to \infty$ even though the spacetime is asymptotically flat. We show that despite this unusual asymptotic behavior, the quasinormal mode potential is well defined everywhere when Schwarzschild coordinates are used. We propose a useful approximate form of the metric, which allows us to produce quasinormal mode frequencies and ringdown waveforms to high accuracy with manageable computation times. Our results indicate that this black hole model is stable against massless scalar field perturbations. We show that, compared to the Schwarzschild black hole, this black hole oscillates with higher frequency and less damping. We also observe a qualitative difference in the power-law tail of the ringdown waveform between this black hole model and the Schwarzschild black hole. This suggests the quantum corrections affect the behavior of the waves at large distances from the black hole.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源