论文标题

基于投资组合的算法选择中的概括

Generalization in portfolio-based algorithm selection

论文作者

Balcan, Maria-Florina, Sandholm, Tuomas, Vitercik, Ellen

论文摘要

在过去的二十年中,基于投资组合的算法选择取得了巨大的实践成功。该算法配置过程首先选择不同算法参数设置的投资组合,然后在给定的问题实例上,使用算法选择器从投资组合中选择具有强大预测性能的参数设置。通常,使用手头应用程序域的典型问题实例的训练集选择了投资组合和算法选择器。在本文中,我们为基于投资组合的算法选择提供了第一个可证明的保证。我们分析训练集应有多大的大小,以确保所得算法选择器在训练集中的平均性能接近其未来(预期)性能。这涉及分析这两个数量可能分歧的三个关键原因:1)算法选择器的学习理论复杂性,2)投资组合的大小,以及3)算法的性能的学习理论复杂性与其参数相关。我们一起介绍了对投资组合结构和算法选择的端到端学习理论分析。我们证明,如果投资组合很大,即使使用非常简单的算法选择器,不可避免的是不可避免的。通过实验,我们说明了通过我们的理论分析实现的权衡:随着我们增加投资组合规模,我们可以希望为每个可能的问题实例包含一个合理的参数设置,但是不可能避免过度拟合。

Portfolio-based algorithm selection has seen tremendous practical success over the past two decades. This algorithm configuration procedure works by first selecting a portfolio of diverse algorithm parameter settings, and then, on a given problem instance, using an algorithm selector to choose a parameter setting from the portfolio with strong predicted performance. Oftentimes, both the portfolio and the algorithm selector are chosen using a training set of typical problem instances from the application domain at hand. In this paper, we provide the first provable guarantees for portfolio-based algorithm selection. We analyze how large the training set should be to ensure that the resulting algorithm selector's average performance over the training set is close to its future (expected) performance. This involves analyzing three key reasons why these two quantities may diverge: 1) the learning-theoretic complexity of the algorithm selector, 2) the size of the portfolio, and 3) the learning-theoretic complexity of the algorithm's performance as a function of its parameters. We introduce an end-to-end learning-theoretic analysis of the portfolio construction and algorithm selection together. We prove that if the portfolio is large, overfitting is inevitable, even with an extremely simple algorithm selector. With experiments, we illustrate a tradeoff exposed by our theoretical analysis: as we increase the portfolio size, we can hope to include a well-suited parameter setting for every possible problem instance, but it becomes impossible to avoid overfitting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源