论文标题
有关拓扑顶点形式主义的更多信息,可用于5个天体的O5平面网
More on topological vertex formalism for 5-brane webs with O5-plane
论文作者
论文摘要
我们提出了一种顶点函数的混凝土形式,我们称之为O-Vertex,以作为O5平面与拓扑顶点形式主义中的5个Brane之间的相交,作为Arxiv的作品的扩展:1709.01928。使用O-Vertex,可以计算在任何具有O5平面的5-Brane Web图上实现的5D理论的Nekrasov分区函数。我们将提案应用于具有O5平面的5-Brane网,并计算纯SO($ n $)量规理论和纯$ G_2 $量规理论的分区函数。获得的结果与文献中已知的结果一致。我们还用Chern-Simons级别$ 9 $计算纯SU(3)量规理论的分区函数。最后,我们以顶点操作员的形式重写O-Vertex。
We propose a concrete form of a vertex function, which we call O-vertex, for the intersection between an O5-plane and a 5-brane in the topological vertex formalism, as an extension of the work of arXiv:1709.01928. Using the O-vertex it is possible to compute the Nekrasov partition functions of 5d theories realized on any 5-brane web diagrams with O5-planes. We apply our proposal to 5-brane webs with an O5-plane and compute the partition functions of pure SO($N$) gauge theories and the pure $G_2$ gauge theory. The obtained results agree with the results known in the literature. We also compute the partition function of the pure SU(3) gauge theory with the Chern-Simons level $9$. At the end we rewrite the O-vertex in a form of a vertex operator.