论文标题

在与代数三角学相关的二元形式的基本区域

On the Area of the Fundamental Region of a Binary Form Associated with Algebraic Trigonometric Quantities

论文作者

Mosunov, Anton

论文摘要

令$ f(x,y)$为二进制学位的二进制形式,至少是三个和非零的判别。我们估计面积为curve $ | f(x,y)|的面积$ a_f $ |四个二进制形式家庭的= 1 $。我们感兴趣的前两个家庭是最低多项式的同质化,$ 2 \ cos \ left(\ frac {2π} {n} {n} \ right)$和$ 2 \ sin \ left(\ frac {2π} {2π} {n} {n} {n} {n} \ right)$我们认为的其余两个二进制形式的家族分别表示第一和第二类的Chebyshev多项式的均质化,分别表示$ t_n(x,y)$和$ u_n(x,y)$。

Let $F(x, y)$ be a binary form of degree at least three and non-zero discriminant. We estimate the area $A_F$ bounded by the curve $|F(x, y)| = 1$ for four families of binary forms. The first two families that we are interested in are homogenizations of minimal polynomials of $2\cos\left(\frac{2π}{n}\right)$ and $2\sin\left(\frac{2π}{n}\right)$, which we denote by $Ψ_n(x, y)$ and $Π_n(x, y)$, respectively. The remaining two families of binary forms that we consider are homogenizations of Chebyshev polynomials of first and second kinds, denoted $T_n(x, y)$ and $U_n(x, y)$, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源