论文标题
从社交媒体数量数据中过滤公众关注的强度
Filtering the intensity of public concern from social media count data with jumps
论文作者
论文摘要
在过去十年中,从在线社交媒体数据(例如Twitter)获得的计数时间序列引起了学者和市场分析师的兴趣。将Web活动记录转换为计数会产生具有特殊特征的时间序列,包括光滑路径和突然跳跃的共存以及横截面和时间依赖性。本文使用有关英国和美国国家风险的Twitter帖子,提出了一种创新的状态空间模型,用于跳高的多元计数数据。我们使用拟议的模型来评估公众关注对这些国家对市场系统的影响。为此,从Twitter数据中推断出的公众担忧被解散为特定国家 /地区的持续性术语,风险社会放大事件以及该国系列的共同发展。然后使用确定的组件来研究乡村风险溢出的存在和幅度,以及对金融市场波动性的社会扩增影响。
Count time series obtained from online social media data, such as Twitter, have drawn increasing interest among academics and market analysts over the past decade. Transforming Web activity records into counts yields time series with peculiar features, including the coexistence of smooth paths and sudden jumps, as well as cross-sectional and temporal dependence. Using Twitter posts about country risks for the United Kingdom and the United States, this paper proposes an innovative state space model for multivariate count data with jumps. We use the proposed model to assess the impact of public concerns in these countries on market systems. To do so, public concerns inferred from Twitter data are unpacked into country-specific persistent terms, risk social amplification events, and co-movements of the country series. The identified components are then used to investigate the existence and magnitude of country-risk spillovers and social amplification effects on the volatility of financial markets.