论文标题
深度半监督的嵌入式聚类(DSEC),用于心力衰竭患者的分层
Deep Semi-Supervised Embedded Clustering (DSEC) for Stratification of Heart Failure Patients
论文作者
论文摘要
确定疾病的表型可以为院内患者护理和药物发育带来可观的好处。高维数据集(例如电子健康记录)的结构通常是通过数据嵌入来表示的,并使用用于分组相似结构数据的聚类方法。如果已知在数据中存在亚组,则可以使用监督方法来影响发现的群集。我们建议将深嵌入聚类扩展到半监督的深层嵌入式聚类算法,以通过数据中的已知标签对亚组进行分层。在这项工作中,我们采用深度半监督的嵌入式聚类来确定来自4,487例心力衰竭和对照患者的电子健康记录的数据驱动的患者心力衰竭。我们发现来自从异质数据得出的嵌入式空间的临床相关簇。所提出的算法可能会发现有不同结果的患者的新未诊断的亚组,因此可以改善治疗。
Determining phenotypes of diseases can have considerable benefits for in-hospital patient care and to drug development. The structure of high dimensional data sets such as electronic health records are often represented through an embedding of the data, with clustering methods used to group data of similar structure. If subgroups are known to exist within data, supervised methods may be used to influence the clusters discovered. We propose to extend deep embedded clustering to a semi-supervised deep embedded clustering algorithm to stratify subgroups through known labels in the data. In this work we apply deep semi-supervised embedded clustering to determine data-driven patient subgroups of heart failure from the electronic health records of 4,487 heart failure and control patients. We find clinically relevant clusters from an embedded space derived from heterogeneous data. The proposed algorithm can potentially find new undiagnosed subgroups of patients that have different outcomes, and, therefore, lead to improved treatments.