论文标题

一些关于正交加性多项式的注释

Some notes on orthogonally additive polynomials

论文作者

Schwanke, Christopher Michael

论文摘要

我们使用涉及根平均功率和几何平均值的kusraeva的两个多项式身份,从均匀完整的矢量晶格中提供了有界正交的多项式的两种新特征。此外,表明矢量晶格上的多项式在正锥上是正交的,在正圆锥上是正交的。这些结果改善了G. Buskes和作者对有限的正交多项式多项式的最新表征。

We provide two new characterizations of bounded orthogonally additive polynomials from a uniformly complete vector lattice into a convex bornological space using separately two polynomial identities of Kusraeva involving the root mean power and the geometric mean. Furthermore, it is shown that a polynomial on a vector lattice is orthogonally additive whenever it is orthogonally additive on the positive cone. These results improve recent characterizations of bounded orthogonally additive polynomials by G. Buskes and the author.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源