论文标题

基于功率谱的卷积神经网络的亚巨星中的模式角度识别

Mode Angular Degree Identification in Subgiant Stars with Convolutional Neural Networks based on Power Spectrum

论文作者

Du, Minghao, Bi, Shaolan, Zhang, Xianfei, Li, Yaguang, Li, Tanda, Shi, Ruijie

论文摘要

识别振荡模式的角度$ l $ l $对于星星学是必不可少的,并且依赖于在所谓的峰出现分析中拟合功率谱之前的视觉标记。在振荡子级中,径向($ L $ = 0)模式频率以频率线性分布,而非radial($ l $> = 1)模式是P-G混合模式,其频率具有复杂的分布,这增加了识别$ L $的难度。在这项研究中,我们培训了一个1D卷积神经网络,使用平滑的振荡光谱执行此任务。通过训练模拟数据并微调预训练的网络,我们在开普勒数据上达到了95%的精度。

Identifying the angular degrees $l$ of oscillation modes is essential for asteroseismology and depends on visual tagging before fitting power spectra in a so-called peakbagging analysis. In oscillating subgiants, radial ($l$= 0) mode frequencies distributed linearly in frequency, while non-radial ($l$ >= 1) modes are p-g mixed modes that having a complex distribution in frequency, which increased the difficulty of identifying $l$. In this study, we trained a 1D convolutional neural network to perform this task using smoothed oscillation spectra. By training simulation data and fine-tuning the pre-trained network, we achieved a 95 per cent accuracy on Kepler data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源