论文标题

旋转模棱两可的暹罗网络用于跟踪

Rotation Equivariant Siamese Networks for Tracking

论文作者

Gupta, Deepak K., Arya, Devanshu, Gavves, Efstratios

论文摘要

旋转是在视觉对象跟踪中遇到的漫长而尚未解决的艰苦挑战之一。现有的基于深度学习的跟踪算法使用常规的CNN,这些CNN本质上是翻译等效的,但并非旨在解决旋转。在本文中,我们首先证明,在视频中存在旋转实例的情况下,现有跟踪器的性能受到严重影响。为了避免旋转的不利影响,我们提出了旋转等值的暹罗网络(Re-Siamnets),该网络是通过使用包含可进入过滤器的群 - 等级卷积层构建的。暹罗人允许以无监督的方式估算对象的方向的变化,从而促进其在相对2D姿势估计中的使用。我们进一步表明,通过对两个连续帧之间的方向变化施加限制,可以使用这种方向变化来在暹罗跟踪中施加其他运动约束。对于基准测试,我们提供旋转跟踪基准(RTB),该数据集包含一组带有旋转实例的视频。通过对两个流行的暹罗体系结构进行的实验,我们表明重新启动可以很好地解决旋转问题,并且超越了其常规对应物。此外,重新启动可以以无监督的方式准确估计目标姿势的相对变化,即目标对参考框架的平面内旋转。

Rotation is among the long prevailing, yet still unresolved, hard challenges encountered in visual object tracking. The existing deep learning-based tracking algorithms use regular CNNs that are inherently translation equivariant, but not designed to tackle rotations. In this paper, we first demonstrate that in the presence of rotation instances in videos, the performance of existing trackers is severely affected. To circumvent the adverse effect of rotations, we present rotation-equivariant Siamese networks (RE-SiamNets), built through the use of group-equivariant convolutional layers comprising steerable filters. SiamNets allow estimating the change in orientation of the object in an unsupervised manner, thereby facilitating its use in relative 2D pose estimation as well. We further show that this change in orientation can be used to impose an additional motion constraint in Siamese tracking through imposing restriction on the change in orientation between two consecutive frames. For benchmarking, we present Rotation Tracking Benchmark (RTB), a dataset comprising a set of videos with rotation instances. Through experiments on two popular Siamese architectures, we show that RE-SiamNets handle the problem of rotation very well and out-perform their regular counterparts. Further, RE-SiamNets can accurately estimate the relative change in pose of the target in an unsupervised fashion, namely the in-plane rotation the target has sustained with respect to the reference frame.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源